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A conflict game situation is analyzed, made up of the problems of evading a 
closed target set and of contact with this set. It is assumed that the player re- 

solving the evasion problem has incomplete information on the system’s phase 
coordinates. It is shown that either the evasion problem or the encounter prob- 

lem is always solvable in the game situation mentioned. The arguments are 
based on the extremal construction from [l, 21,suitably modified in [3 - 51 to 

allow for the specific nature of control problems under incomplete information 

(*)* 

1. Let the motion of a controlled system be described by the vector differentialequa- 
tion 

da:/& = A 0) z + f* (4 4 4, ZJ E p w, v E Q (t) (1.1) 

Here 3 is a vector in an n-dimensional Euclidean space R”, and, u and u are control 

vectors ; P (t) and Q (t) are compact sets in finite-dimensional normed spaces, bounded 
in every finite interval and measurably dependent on t. The matrix A(t) is assumed 

Lebesgue summable in every finite interval, while the function f (t, u, u) is continuous 

in all the arguments. A closed set M* is delineated in the space R1 x R” of the va- 
riables t and x . Treating u as a control vector and u as some poorly pre&table noise, 

we consider the problem of the phase state x ii!] of system (1.1) evading the set &l, 
till some specified instant 6. We assume the vector II: E R” is subject to a nonsingu- 

lar linear transformation (for instance, see [3]), as a result of which Eq. (1.1) becomes 

dX / dt = f (t, 24, v), 24 E P (t), v E Q (t) (1.2) 

the function f (t, u, v) remains continuous in all arguments and the set M, turns into 
a new set M, also remaining closed. 

The control process is complicated by the absence of complete information on thesys- 
tern’s phase states realized and proceeds by the following discrete approximate scheme. 
At an instant ‘~1 the controller knows a certain compact set G [zl] c R” containing 
the state x i’cil of system (1.2), realized by this instant. On the basis of this information 

*) Kriazhimskii, A. V., A linear guidance game with incomplete information. 
Sverdlovsk, Preprint, UNTs Akad.Nauk SSSR, 1975. 
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he chooses, at the instant ‘rf, his Lebesgue measurable control u ft] for the next interval 
[I!~, zi+J. At the instant ‘t. zsl he knows a new information set G IT~+~] and the process 
is repeated. In the control process he can meet up with any realization u [t] of noise U, 

Lebesgue measurable and satis~ing the inclusion u ftf E P (t) , and with any realiza- 
tions of the information sets G [all containing the current states 2 [zi] of system(l.2) 
and satisfying the conditions 

G hiI c G (G hi-J, ~i-~, q}, G hi1 E I’ (zi) (1.3) 

Here G {G h~_,~, -ct+, ‘it} denotes the set of those states into which the vector x ftJ 
can be led by the instant Zi under law (1. Z), starting the motion at instant 73_1 from 
the points of set G [zl_,] under the action of the controls v [t] and perturbations u It] 

realized in the interval \‘ti+ zi) ; I’ (t) denotes some i! -dependent family of sets in 

Rn, whose properties are defined more exactly below. Condition (1.3) assumes that at 
the instant 71 the controller receives information on the control v [t] and perturbation 

u [t] realized (t E Izi, , xi)) ; he can use this information only to update the infor? 
mation set at the instant 7r, but he cannot use it when forming his control u It]. These- 

cond of conditions (1.3), constraining the class of information sets, characterizes the qua- 

lity of the observation method being used. 
Having adopted the control scheme mentioned,it is natural to replace the original 

problem with incomplete information by the problem of controlling the information set ; 
it is also natural to replace the evasion condition for the not exactly known state t [1] 

bY the ‘Ondition (t, G [t]) n jj,f = 0, 
t E It,, 61 

In order to evaluate the results ensured by some control law or other, it is convenient 

to imbed the problem being analyzed into the plan of some antagonistic game set up be- 
tween the player, namely, the controllerchoosing u [t], and a fictitious player who has 

at his disposal the realizations of perturbations u [tJ and of the information sets G [t] 
within the limits of constraints (1.3). It turns out to be convenient for the fictitious 

player - the opponent - (when viewing the problem from his “point of view”) to retain 

the “positional” nature of the formation of the perturbations u [t] and of the informa- 
tion sets G [t], Namely, these players form the objects mentioned at discrete instantsai, 

which take place by the following hierarchical scheme: theset G (G [~i-~l, %+, ai) 
prescribes the set G fzi] satisfying conditions (1.3) ; the control u [tf, which will act 
on the system during the interval [xi, t&, is formed from the set G [zi] , and thepro- 

cess is repeated. 
To preserve terminology, the player, i.e. the controller who has the control Y [tf at 

his disposal and who wishes to effect the evasion (1.4), is named the second playec,while 
his opponent, who forms the perturbations u ft] and the information sets, is named the 
first player. Since the game being analyzed is antagonistic, it is natural to present the 

condition for terminating the process, successfully for the first player, in terms of the in- 

formation sets as 
(1.5) 

for some z E [to, 61. 
(7, G[zl} n M=#= 0 

2, The mathematical formalizations of the conflict control problems mentioned is 
based on the substitution described above of the original problems with incomplete in- 

formation by problems of controlling an information domain treated as a new generalized 
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phase space camp (fin) formed by all possible compact sets from R” with the Haus- 
dorff metric. Let a nonempty closed set I’ (t) C camp (R”) be associated with every 
t e Rf and let the following be satisfied: 

Condition 2.1. G + y fZ I’ (t) for all G E I’ (t), g E en, t E I?. The 

symbol A + B denotes the algebraic sum of sets A, B C R” ; if one of them, say 

B, consists of a single vector b C5 R” (i.e., B = (b}), then instead of writing A + 

{b) we simply use the notation A+b. 
The sets r (t), characterizing the quality of the method being used to observe system 

(1.1)‘ can be treated in the ensuing presentation as distinctive constraints on the “infor- 

mation resources” of the first player prescribing the set G [t]. The pairs {t, G)~fil X 

camp (fin) are called positions. In accord with the above mentioned principle for for- 
ming the controls v [t] by the second player, i. e. the controller, the control laws used 
by him, i.e. the strategy V, are identified with mappings which associate with every 

position {t, G) a function u bl, (T E It, as)), measurable dependent on z and satis- 

fying the condition u [z] e Q (z). The laws for forming the information domains G [t] 
and perturbations u ]t] by the first player, viz., his strategies J and U, are identified 

with mappings which associate with every position {t, G} a set G’ = J (t, G) satis- 
fying the conditions 

G c G, G E I’ (t) 

and a measurable function IL 1~1, (Z E 1 t, cm)) satisfying the inclusion u [T] E P (x) , 
respectively. 

Let A = (zi : z. = t,, ‘ti+l > ti, i = Q,4 . ..} be some partitioning of the semi- 
axis It,, oo) by the intervals ]zl, z~+J, u It] be some measurable function with va- 
lues in set P (t), and V be some strategy. Every function GA [t] = Ga [t, t,, G,, V, 
u [. ]I with values in the space camp (an), defined by the to~owlng recurrence rela- 
tions 

G~ffl=Gbil+ { f(%u[tl,qI~l)df, t E [% %+I) 
+i 

+i+l 
GA [%tlI f G fzil 3- f f (zs u [.tl, vi [r]) ~8% 

3 
GA [to1 = Go, G [zi+ll E I’ (~g-1)~ ~i [* 1 = V (z;, GA [IY~]) 

is called an approximate motion from position {to, Go}, corresponding to the elements 
chosen, Analogously, every function Ga ft] = Gd ft, to, Go, U, J, u [- 11 with values 
in the space camp (R”), defined by the recurrence relations 

Gi [toI = Go, ui f* I = U (pi, GA [T~I) 

is called an approximate motion from position {t,,, Go), corresponding to strategies U 
and J, to partitioning A = {zi} , and to some measurable function u [t] satisfying 
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the condition u [t] CZ Q (t) . 
In what follows it is convenient to pass from approximate motions to certain ideal mo- 

tions, as was done in [l, 71 for game problems with complete information. Let G : R1 t 
camp (Rn) be some mapping. By grItt,l,]G we denote a graph of mapping G. consi- 
dered in the interval ]tr, ta] and defined by the relation grtt,,t,l G = [{t, z} E [tl, 
t,jxRn : z E G (t)]. Every function G ltl with values in the space camp (R”), 
for which we can find a sequence of approximate motions GA(k) 1tJ = GAtkj lt, t,, 

GJko(“), V, u(k) [. 11 in every interval [to, Q] , such that 

Cl @‘[t,, d$cr,) -+ gqt,,, BIG = cl (@;qto,el G), @’ cf Go (2.1) 

as k * 00 ,is called a motion G It, t,, Go, Vi from position {to, G,), generated by 
strategy V . We remark that the symbol cl (X) denotes the closure of a set X in the 
appropriate space and that convergence in (2.1) is to be understood in the sense of the 
Hausdorff metric in the appropriate space. The motions generated by strategies U and 

J are defined similarly. Namely,every function G [t] with values in the space camp 
(fin), for which we can find a sequence of approximate motions GAckj [t] = GA(k) it, 
to, G,, u, J, d”) [*II, in every interval [to, S] , such that 

el #[to, a~G,(k)) 3 grit,, a,G = cl (grIr,,e] G) 

supi (d:; - zi”‘) 3 0 

as k + 00, is called a motion G [t, to, Go, U, Jl from position {to, Go}, correspon- 
ding to strategies U and J . 

The sets of all possible motions generated by strategies V or by U and J from the 

position {to, Go} are denoted rl[ (to, Go, V) and rI (to, Go, U, J) ,respectively. The 

following is valid: 

Lemma 2.1. For any strategies V, U, J the sets fl (to, Go, V) and n (to, Go, 
U, J) contain at least one common element. All elements of the sets mentioned are 
functions upper-semicontinuous with respect to inclusion [5], with vaWes in the space 
camp (Rn) and satisfying the conditions 

G [toI = Go, G [tl # 0, t E [to, m> (2.2) 

Just as in control problems with complete information Cl, 51, the given abstract defini- 

tion of strategies and motions admits of a natural transition, at least for the second player 

-the controller - to control procedures realizable in practice. This transition is effected 

by reverting to the approximate motions and to the discrete scheme for forming the con- 
trols ; all the statements made for motions G ItI have their approximate analogies. 

We turn now to a formalized posing of the problem. The problem of the second player 

- the controller - can be posed as follows: 

Problem 2. 1. For a position {to, Go} find an open neighborhood H (M) of the 

set M and construct a strategy V” such that the condition 

{t, G [tl} j-J H (M) = 0, t E [to, o“) (2.3) 

is satisfied for every motion G it1 = G it, to, Go, J’“l 
The first player’s canter-problem&n the concepts formalized above of Strategies u 
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and J and of the motions corresponding to them, can be posed as follows: 
or ob fe m 2. 2. For a position {t,, G,} construct strategies u” and I” which 

would ensure the fulfillment of the condition 

{V%} n M# 63 (2.4) 
at some instant z E [to, fil for every motion G [tl = G It, t,, Go, U”, JoI 

We note that the condition II (to, G,, V) n II (to, G,, U, J) # $&valid by vir- 
tue of Lemma 2.1 for all possible positions {ts, Go} and strategies V, %J, J, enables 
us to unite Problems 2.1 and 2.2 and to call their union a game. 

3, The approach to the problems being analyzed is based on the extremal construc- 
tion from [I], modified as in [3 - 53 to the distinctive features of the given game prob- 
lems. Let us describe the fundamental elements of the extremal construction mentioned. 
First of all we consider the case where a saddle point exists in the small game [5], i, e, , 

we assume that the condition 

min max sf(t,u, u) = max min 
u~P(f) =Q(t) oeQ(t) GP(U 

sf(t,u,u) (3.1) 

is satisfied for all t E R1 and s E Rn, 

Let W c R1 x camp (11”) b e some set. The following concept, named stability ,. 
is of subsequent importance. For arbitrary measurable functions u (t) and U (t) satisfy- 
ing the conditions u (t) EZ P (t) and u (t) E f? (t), (t fZ It*, oo)), we set 

F, (6 v.(t)) = co I/ : f = f (6 u, u (91, u E P (0) (3.2) 

Fn (t, in (9) = co {f : f = f (4 u 01, 4, u E 0 (t)) (3.3) 

and we consider the differential inclusions 

&J / dt E F, (t, u (t)), 2 (t*) = 0 (3.4) 

dx / dt E F, (t, u (t)), z (t*) = 0 (3.5) 

The set W is said to be v-stable if for every choice of position {t*, G*) E W of 
instant t* > t,, of measurable function u (t) E P (t) (t > f,,J , and of set G* c 
G,, G* E I’ (t*) , weacan find an obsolutely continuous solution x (t) of inclusion 
(3.4) such that {t *, G* f 8 (t*)} E w . However, if it happens that for every 
choice of position {t*, G,} E W, of instant t* > t, ) and of measurable function 
U (t) satisfying the condition u (t) E 0 (t) (t > t*) we can find an absolutely con- 
tinuous solution x (t) of inclusion (3.5) and a set G* c G,, G* E r (t*), such that 
either (7, G, + x (v)} n M + 0 for some z E It,, t*] or {t*, G* f- 
z (t*) f E W, then set &’ is said to be u - j -stable (relative to target M). 

We now turn to a description of another important element of the construction being 
considered, viz., extremal strategies. Let us consider a certain closed set W in the space 
Rl x camp (fin) with the metric 

P (h G), = max { 1 tl - t2 I, d&t WI, Q) (3.6) 

Let {t*, G,) be an arbitrary position. By S (t*, G,) we denote the collectionof all 
possible vectors s E Rn satisfying the conditions 

it*, G, + $1 e w, II ~11 = min [I] .s’ 11, S’ E R” : {t*, G, -+ s’} E Wl (3.7) 
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We construct a strategy V@) 
When S (t, G) # 0 

which, by analogy with ~1, 53, we say is extremai to set W. 
we choose an arbitrary vector s, E 8 (t, G) and we define the 

sets p) (r) (z E [b, m)) made up of all possible vectors V* E Q (z) satisfying the 
condition 

min s*f (T, 7.4, u*> = max 
EP(T) 

min s*f (z, 24, v) 
=Qw =P(+) (3.8) 

Using the measurability of the many-valued mappings of P (t) and Q (t), it can be 
shown that the sets (j(,‘“) (‘I$ also depend measurably on parameter 7 . For the position 

(t, G) being considered we ROW set $‘@) (8, G) = u [ 8 f, where u 121 is an arbitrary 

measurable function satisfying the condition u [T] E Qfe) (z), (.t E it, oo)). However, 

if the set S (t, G) turns out to be empty for a position {t, G) , then we set V@) (t, 
G) = v [. 1, where u [T] is an arbitrary measurable function satisfying the condition 

u f-4 E Q (z), (x E It, 00)). 
The strategy U(e) extremal to W is defined analogously, Namely, if s (8, G) # a, 

we should choose an arbitrary vector s* E 8 (t, G) and construct the sets Pee) (T), 
(T E [t, oo)) made up of all possible vectors U* E P (T) satisfying the condition 

max 
uEP(r) 

- s*f (z, u*, 27) = min max - s*f (z, 24,~) (3.9) 
u~P(r) u~Q(s) 

Further, for the position chosen we should set ut@ (t, G) = u 1. ], where u [z] & an 
arbitrary measurable function satisfying the condition u [z] E P(e) (a) (z 63 [t, oo)>. 

However, if S (t, G) == 0, we should set Ute) (t, G) = u I.], where u [T] is an ar- 

bitrarymeaaurable function satisfying the condition u [zl EL! P (7) (z E3 It, cm)). 
The strategy Jte) extremal to set J+’ takes a somewhat different form in the case at 

hand. For an arbitrary position {t, G} we denote by B (t, G) the collection of all pos- 

sible sets c’ E camp (fin) 

0, G’ -I- 

for various y’ E Rn and 

such that 

y’}EW, G’cG, G’cX’(t) (3.10) 

I 9’ II 4 IJ y 11 (3.11) 

for every vector y E &” for which we can find a set G” c G, G” E I’ (2) such that 
(t, G” -/- r/3 E IV. Thus, the set E (t, G) is a collection of all compacta G’ c C;, 

G’ E r (t), for which the inclusion {t, G’ $ y’} E w is ensured by a shift in the 
minimal norm by a vector y’ E 8” . Strategy JCe) is now defined as follows. When 

8 (t, G) ;;f; 0 we set J(S) (t, G) = G’, where G’ is an arbitrary element from theset 
E: (b, G). However, if the set E (t, G) is empty for the position chosen, then the set 

J(e) (t, G) = G’, where G” is an arbitrary set satisfying the conditions G’ c G, G’ E 

r (0. 
Let the symbol GEEI denote a closed p-neighborhood of set G C Rn. The role of 

the extremal strategies is clarified in the following statements. 

Lemma 3.1. If a number a, > 0 exists for a position (to, G,,) *such that (tot 
Go’“*]} E $-$f and if a closed set W C a’ X camp (fin) is vstable and is such that 
the validity of the inclusion {& G) e W’implies the validity of the inclusion (tt 

G’) E I$’ for alf G’ EZ camp (R"), G' C G, then the strategy I’(@, extcemal toset 
W for all motions G [tl = G It, to, Go, Vte)I, ensures the satisfaction of the condition 

{t, G M} E W, i! > to (3.12) 
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Lemma 3.2. If {t,, G,} E W and the closed set w C fil X camp (a”) 
isu- j -stable, then the strategies U@) and J(“), extremal to the given set Z; ensure 

the satisfaction of the condition 

{t, G Itl} E W, t E tt,,, T) 

for every motion G [tl = G [t, t,,, Go, Uce), J(@] for which 

{t, G [tl} n M = 0 
for all t E [to, ‘tl. 

I3.13) 

(3.14) 

The statements made can be proved along the lines used, for instance, in [5] for an or- 

dinary differential game with complete information and we don’t do SO here, It should 

be noted that Lemmas 3.1 and 3.2 remain valid in the approximate version as well. The 
motions G [t] should be replaced by their approximate analogs, viz., by the motions 
Ga [t], while the sets W and M , by open e-neighborhoods of them in the appropriate 

spaces. In this case the statements are valid for all approximate motions GA [t] with 
partitionings A = {pi} whose diameters d (A) = supi (~i+l - Ti) do not exceed 

some fairly small number 6 = &. 

4. Relying on Lemmas 3.1 and 3.2 and assuming the satisfaction of 
Condition 4. 1. r (t*) c r (t*) f or all t* > t,, we prove the validityofthe 

following alternative statement which is the main result of the present paper. 

Theorem 4. 1. One and only one of the folIowing two assertions is valid for any 
number 6 and position {t,, G,} : either (I) Problem 2.1 of evasion up to the instant 6 

is solvable for the position {to, Go} or (II) Problem 2.2 on contact by the instant 6 is 
solvable for the position {t,, G,} . 

Let us sketch the proof of Theorem 4.1, following the sequence of reasonings from [5 3. 
Suppose that some fl has been chosen. By w(e) we denote the set of allpossiblepositions 

{t, G} for each of which, taken as the initial position, problem 2.1 of evasion from set 
M up to instant 8 is not solvable. Analogously to [5] it can be shown that the set IV@) 
indicated is closed. However, it happens to be singularly important that set IV(*) is u - 

j-stable. To prove this we accept to the contrary that it is not. Then we can find a po- 
sition {t*, G,} E Wt8), an instant t* > t* , and a measurable function II* (t) satisfying 

the condition u* (t) E Q (t) (t E [t*, t*j) such that for every absolutely continuous solu- 
tion x (t) of the inclusion 

dx / dr E F,, 0, u* (t)), x (t*) = 0 (4.1) 

the following conditions are satisfied : 

for all z E It*, t+] 
{T G, + x W) fl M = 1zI (4.2) 

{t*, G + 2 (t*)) e W (4.3) 

for all G C G*, G e I’ (t *). Note that because the set of solutions of differential inclu- 
sion (4.1) is closed in the uniform metric and because set M is closed, condition (4.2) 
remains valid also for some sufficiently small open neighborhood M@@) of set M. 

Let Z* c camp (Rn) be the set of all possible elements of G’ of the form 

G’ = G + z (t*), G c G,, G 62 r (t’) (4.4) 
where t (s) is some solution of inclusion (4.1). Using the definition of sets WC81 and L + 

and theeondition 4.1 and arguing just as in the analogous situation in the ordinary posi- 
tion differential game [519 it can be shown that for every element G* E z+ we can find 
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a strategy V*, an open neighborhood El* (M) of set M , and a number 8* > 0 SUC~I that 

for all motions G [t] = G [t, t*, G, V*] the satisfaction of the condition 

{t, G rt11 n ff* of) = 0, t E It*, 61 (4.5) 

iS ensured if only the element G E camp (P) satisfies the inequality 

dist (G, G*) Q d* (4.6) 

Here dist (G, G*) is the Hausdorff distance between sets G and G*_ Taking into account 

the given property of the elements G* E X * and also the compactness of set z *, it j.s 
easy to be convinced that we can find a finite system of sets 

oi = (G E camp (P) : dist (G, Gi*) B &*}, GI* E z* 

covering set I: * andfhe strategies Vi* (i E {i, 2, . . .,m})s~lch that for every element 
G E of the strategy Vi* ensures the evasion 

it, G ItI} fI Hi* (W = 0, t E P*, 61 (4.7) 

of all motions G IS] = G ft, t*, G, Vi*] from some open neighborhood Hi* (H) of set M 
in the interval It*, 61. 

Let a* be the minimum one of the numbersEg / 2, Br* / 2, b,*/ 2, . . , b,* / 2, and let 

A* (G) ={G’ : G’C G, G’ e I’ (P)). Arguing by contradiction,it is easy to see that anum- 
ber tcg > 0 exists such that 

A* (G*[““‘) C (A* (G,))@‘) (4.8) 
Let W,(“) denote the closure of the set consisting of all possible positions {t, G} such that 
either t E It*, t*l and 

G = G’ + 2 (P), 6’ E camp (E?), G’ C G*laOJ (4.9) 

where zr (-1 is some solution of inclusion (4. l), or t E (t** W) and 

G = G [t, t*, G’, V,*] (4. IO) 

for some i E (1, 2, , . . , m> and some motion G I., t*. G’, V,*] and element G’ E Op 

Using condition (4.1) it is easy to see that the set W*‘*) constructed is Y--stable and 

that the condition {& G) n ff* WI = 0 (4.3.1) 

is satisfied for every position {t, G) E W’*t*Yf, d E It*, S] . Here $I* (M) is some open 
neighborhood of set M, as which we can select, for example, the intersection of the neigh- 

borhoods Ho (M) = M-‘af, HI* (M), H9* (MM), . . , If,* (M). 
According to the definition of set W,(“) the inclusion {t*, G+t”“‘} E we(“) is valid for 

the position {t*, G*; ; whence, with due regard to the v-stability of set W*(s), in accord 

with Lemma 3.1 we conclude that the strategy V@ extremal to the given set ensures the 

evasion {t, G It]) n H, (M) = 0, t 6~ be9 6] (4.12) 

of au motions G I~J = G [t, t*, G,, If@)] from an open neighborhood He @f) of Set Jf 
in fie interval ft*, ~1, and so, Problem 2.1 of evasion is solvable for the position {t+, G*J- 

However,the lat~rcontradicts the choice of the position {f,, G~)EW@)as a position for which 
problem 2.1 is not solvable; by the same token the u - j-stability ot set W(8) is proved. 

Now we take into account the condition 

(@, G) fl M # 0, (6, Gl = W@) (4.13) 

following directly from the definition of set W’@) and, by virtue of Lemma 3.2, we con- 
clude that problem 2.2 on encounter with set M by the instant 8 is solvable for every 
position (to, G,] E w(a) ; as the strategies resolving this problem we can take the stra- 

tegies L @ and J@) extremal to set WW.Thus. for every position {to, G,& , Problem 2.1 
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is solvable if only {to, G,f E W(s) and Problem 2.2 is solvable if (Qu Gal & I@‘), and 
that, with due regard to Lemma 2.1, guarantees the impo~ibi~ty of the simultaneoussol- 

vability of these problems and proves Theorem 4.1. 
The approximate analogs of Lemmas 3.1 and 3.2 enable us to obtain the following 

approximate version of Theorem 4.1. 

Theorem 4. 2. Suppose that some number 6 has been chosen and that some posi- 
tion {to, G,,} has been fixed. Then, if the first assertion of Theorem 4.1, i. e. that Prob- 

lem 2.1 is solvable, is correct, then we can find a strategy V”, a number 6, > 0 and 

some open neighborhood Ha @!f) of set M such that the satisfaction of the condition 

{t, GA ItI) n Ho (ikf) = 0, t E ito, 61 (4.14) 

is ensured for all approximate motions GA [t] = GA [t, to, G,, v”, u [a 11 with the 

step d (A) = SUPi (%*I - zi) of the partitioning A = {TS), satisfying the condition 

d (A) < 60. To the contrary, if the second assertion of Theorem 4.1, i. e. that Prob- 
lem 2.2 is solvable, is correct, then for every choice of number e > 0 we can find a 
number 6, > 0 such that certain strategies u” and Jo ensure the satisfaction of the 
condition 

(4.15) 

for all approximate motions GA [t] = GA It, $0, Go, U”, J”, v I- J] with the step 

d (A) = sup, (Zi+r - ZI) of partition~g A not exceeding 6,. 

The author thanks N. N. Krasovskii for his attention to the work, and also A, I. Subbotin 
and A, G. Chentsov for useful discussions of the results. 
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